Lecture -1 Research methods
· Statistics?
· The Research Process
· Initial Observation
· Generate Theory
· Generate Hypotheses
· Data collection to Test Theory
· Analyze data
· Descriptive Statistics: Overview
· Central Tendency
· Measure of variation
· Coefficient of Variation
· Fitting Statistical Models
· Conclusion
· Practical Exercise
Lecture -2 Statistics
· Building statistical models
· Types of statistical models
· Populations and samples
· Simple statistical models
· The mean as a model
· The variance and standard deviation
· Central Limit Theorem
· The standard error
· Confidence Intervals
· Test statistics
· Non-significant results and Significant results:
· One- and two-tailed tests
· Type I and Type II errors
· Effect Sizes
· Statistical power
· Practical Exercise
Lecture -3 SPSS Environment
· Accessing SPSS
· To explore the key windows in SPSS
· Data editor
· The viewer
· The syntax editor
· How to create variables
· Enter Data and adjust the properties of your variables
· How to Load Files and Save
· Opening Excel Files
· Recoding Variables
· Deleting/Inserting a Case or a Column
· Selecting Cases
· Using SPSS Help
· Practical Exercise
Lecture -4 Exploring data with graphs
· The art of presenting data
· The SPSS Chart Builder
· Histograms: a good way to spot obvious problems
· Boxplots (box–whisker diagrams)
· Graphing means: bar charts and error bars
· Simple bar charts for independent means
· Clustered bar charts for independent means
· Simple bar charts for related means
· Clustered bar charts for independent means
· Simple bar charts for related means
· Clustered bar charts for related means
· Clustered bar charts for ‘mixed’ designs
· Line charts
· Graphing relationships: the scatterplot
· Simple scatterplot
· Grouped scatterplot
· Simple and grouped -D scatterplots
· Matrix scatterplot
· Simple dot plot or density plot
· Drop-line graph
· Editing graphs
· Practical Exercise
Lecture -5 Exploring assumptions
· What are assumptions?
· Assumptions of parametric data
· The assumption of normality
· Quantifying normality with numbers
· Exploring groups of data
· Testing whether a distribution is normal
· Kolmogorov–Smirnov test on SPSS
· Output from the explore procedure
· Reporting the K–S test
· Testing for homogeneity of variance
· Levene’s test
· Reporting Levene’s test
· Correcting problems in the data
· Dealing with outliers
· Dealing with non-normality and unequal variances
· Transforming the data using SPSS
· Practical Exercise
Lecture -6 Correlation
· Looking at relationships
· How do we measure relationships?
· Covariance
· Standardization and the correlation coefficient
· The significance of the correlation coefficient
· Confidence intervals for r
· Correlation in SPSS
· Bivariate correlation
· Pearson’s correlation coefficient
· Spearman’s correlation coefficient
· Kendall’s tau (non-parametric)
· Biserial and point–biserial correlations
· Partial correlation
· The theory behind part and partial correlation
· Partial correlation using SPSS
· Semi-partial (or part) correlations
· Comparing correlations
· Comparing independent rs
· dependent rs
· Calculating the effect size
· How to report correlation coefficients
· Practical Exercise
Lecture -7 Regression
· An introduction to regression
· Some important information about straight lines
· The method of least squares
· Assessing the goodness of fit: sums of squares,
· R and R2
· Doing simple regression on SPSS
· Interpreting a simple regression
· Overall fit of the model
· Model parameters
· Using the model
· Multiple regression: the basics
· An example of a multiple regression model
· Sums of squares
· R and R2
· Methods of regression
· How accurate is my regression model?
· Assessing the regression model I: diagnostics
· Assessing the regression model II: generalization
· How to do multiple regression using SPSS
· Some things to think about before the analysis
· Main options
· Statistics
· Regression plots
· Saving regression diagnostics
· Interpreting multiple regression
· Descriptive
· Summary of model
· Model parameters
· Excluded variables
· Assessing the assumption of no multicollinearity
· Casewise diagnostics
· Checking assumptions
· What if I violate an assumption?
· to report multiple regression
· Practical Exercise
Lecture -8 Categorical predictor in multiple regression
· Dummy coding
· SPSS output for dummy variables
· Practical Exercise
Lecture -9 Logistic regression
· Background to logistic regression
· What are the principles behind logistic regression?
· Assessing the model: the log-likelihood statistic
· Assessing the model: R and R2
· The Wald statistic
· The odds ratio: Exp (B)
· Methods of logistic regression
· Assumptions
· Incomplete information from the predictors
· Complete separation
· Overdispersion
· Binary logistic regression
· The main analysis
· Method of regression
· Categorical predictors
· Obtaining residuals
· Interpreting logistic regression
· The initial model
· Step: intervention
· Listing predicted probabilities
· Interpreting residuals
· Calculating the effect size
· How to report logistic regression
· Testing assumptions
· Testing for linearity of the logit
· Testing for multicollinearity
· Predicting several categories: multinomial logistic regression
· Running multinomial logistic regression in SPSS
· Statistics
· Other options
· Interpreting the multinomial logistic regression output
· Reporting the results
· Practical Exercise
Lecture -10 Comparing two means (t-test)
· Looking at differences
· A problem with error bar graphs of repeated-measures designs
· Step : calculate the mean for each participant
· Step : calculate the grand mean
· Step : calculate the adjustment factor
· create adjusted values for each variable
· The t-test
· Rationale for the t-test
· Assumptions of the t-test
· The dependent t-test
· Sampling distributions and the standard error
· The dependent t-test equation explained
· The dependent t-test and the assumption of normality
· Dependent t-tests using SPSS
· Output from the dependent t-test
· Calculating the effect size
· Reporting the dependent t-test
· The independent t-test
· The independent t-test equation explained
· The independent t-test using SPSS
· Output from the independent t-test
· Calculating the effect size
· Reporting the independent t-test
· Between groups or repeated measures?
· The t-test as a general linear model
· Practical Exercise
Lecture -11 Comparing several means: ANOVA (GLM)
· The theory behind ANOVA
· Inflated error rates
· Interpreting f-test
· ANOVA as regression
· Logic of the f-ratio
· Total sum of squares (SST)
· Model sum of squares (SSM)
· Residual sum of squares (SSR)
· Mean squares
· The f-ratio
· Assumptions of ANOVA
· Planned contrasts
· Post hoc procedure
· Running one-way ANOVA on SPSS
· Planned comparisons using SPSS
· Post hoc tests in SPSS
· Output from one-way ANOVA
· Output for the main analysis
· Output for planned comparisons
· Output for post hoc tests
· Calculating the effect size
· Reporting results from one-way independent ANOVA
· Violations of assumptions in one-way independent ANOVA
· Practical Exercise
Lecture -12 Chi-square
· Analyzing categorical data
· Theory of analyzing categorical data
· Pearson’s chi-square test
· Fisher’s exact test
· The likelihood ratio
· Yates’ correction
· Assumptions of the chi-square test
· Doing chi-square on SPSS
· Running the analysis
· Output for the chi-square test
· Breaking down a significant chi-square test with standardized residuals
· Calculating an effect size
· Reporting the results of chi-square
· Practical Exercise
Case Studies