Lecture 1-15 Python Programming
Live Lecture
· Introduction of Python
· The Companies using Python
· Different Applications where Python is used
· Discuss Python Scripts on UNIX/Windows
· Values, Types, Variables
· Operands and Expressions
· Conditional Statements
· Loops
· Command Line Arguments
· Writing to the screen
· Sequences and File Operations
· Python files I/O Functions
· Numbers
· Strings and related operations
· Tuples and related operations
· Lists and related operations
· Dictionaries and related operations
· Sets and related operations
· Functions, OOPs, Modules, Errors and Exceptions
· Functions
· Function Parameters
· Global Variables
· Variable Scope and Returning Values
· Lambda Functions
· Object-Oriented Concepts
· Standard Libraries
· Modules Used in Python
· The Import Statements
· Module Search Path
· Package Installation Ways
· Errors and Exception Handling
· Handling Multiple Exceptions
Lecture 16-22 Introduction To Statistics
Live Lecture
· Introduction To Statistic
· Distributions and Hypothesis Tests
· Distributions of One Variable
· Hypothesis Testing
· Typical Analysis Procedure
· Data Screening and Outliers
· Normality Check
· Hypothesis Concept, Errors, p-Value, and Sample Size
· Chi Square
· ANOVA
· Practical Exercise
Lecture 23-24 Pandas
Live Lecture
· Pandas Introduction
· Series
· Data Frames
· CSVs
· Data from URLs
· Describing Data with Pandas
· Selecting and Viewing Data with Pandas
· Manipulating Data
· Practical Exercise
Lecture 25-27 NumPy
Live Lecture
· Mathematical Computing with Python (NumPy)
· NumPy Introduction
· NumPy DataTypes and Attributes
· Creating NumPy Arrays
· NumPy Random Seed
· Viewing Arrays and Matrices
· Manipulating Arrays
· Standard Deviation and Variance
· Reshape and Transpose
· Dot Product vs Element Wise
· Store Sales
· Comparison Operators
· Sorting Arrays
· Turn Images Into NumPy Arrays
· Practical Exercise
Lecture-28 Introduction to Machine Learning
Live Lecture
· What Is Machine Learning?
· AI/Machine Learning/Data Science
· Practical Exercise
Lecture 29-30 Machine Learning and Data Science Framework
Live Lecture
· Machine Learning Framework
· Types of Machine Learning
· Types of Data
· Types of Evaluation
· Features In Data
· Modelling - Splitting Data
· Modelling - Picking the Model
· Modelling - Tuning
· Modelling – Comparison
· Practical Exercise
Lecture-31 Data Science Environment Setup
Live Lecture
· Introducing Our Tools
· Windows Environment Setup
· Linux Environment Setup
· Jupyter Notebook Walkthrough
· Practical Exercise
Lecture 32-35 Matplotlib + Seaborn: Plotting and Data Visualization
Live Lecture
· Matplotlib Introduction
· Importing And Using Matplotlib
· Anatomy Of A Matplotlib Figure
· Scatter Plot And Bar Plot
· Histograms And Subplots
· Subplots Option 2
· Plotting From Pandas DataFrames
· Customizing Your Plots
· Saving And Sharing Your Plots
· Practical Exercise
Lecture 36-40 Scikit-learn: Creating Machine Learning Models
Live Lecture
· Scikit-learn Introduction
· Scikit-learn Cheatsheet
· Typical scikit-learn Workflow
· Debugging Warnings In Jupyter
· Splitting Your Data
· Clean, Transform, Reduce
· Convert Data To Numbers
· Handling Missing Values With Pandas
· Handling Missing Values With Scikit-learn
· Choosing The Right Model For Your Data
· Practical Exercise
Lecture 41-45 Scikit-learn - Regression Model
Live Lecture
· Types of Regression Algorithms
· Simple Linear Regression
· Multiple Linear Regression
· Logistic Regression
· Polynomial Regression
· Support Vector Regression
· Ridge Regression
· Lasso Regression
· ElasticNet Regression
· Bayesian Regression
· Decision Tree Regression
· Random Forest Regression
· Practical Exercise
Lecture 46-48 Scikit-learn – Classification
Live Lecture
· Types of Classification Algorithms
· Logistic Regression/Classification
· K-Nearest Neighbours
· Support Vector Machines
· Kernel Support Vector Machines
· Naive Bayes
· Decision Tree Classification
· Random Forest Classification
· Practical Exercise
Lecture 49-50 K Means Clustering
Live Lecture
· K-Means Clustering
· A Simple Example of Clustering
· Clustering Categorical Data
· How to Choose the Number of Clusters
· Pros and Cons of K-Means Clustering
· To Standardize or not to Standardize
· Relationship between Clustering and Regression
· Market Segmentation with Cluster Analysis
· Species Segmentation with Cluster Analysis
· Advanced Statistical Methods - Other Types of Clustering
· Types of Clustering
· Dendrogram
· Heatmaps
· Practical Exercise
Lecture 51-53 Text Mining
Live Lecture
· The concepts of text-mining
· Use cases
· Text Mining Algorithms
· Quantifying text
· TF-IDF
· Beyond TF-IDF
· Practical Exercise
Lecture 54-58 Basic Time Series Forecasting
Live Lecture
· What is time series?
· Techniques and applications
· Time series components
· Moving average
· Smoothing techniques
· Exponential smoothing
· Univariate time series models
· Multivariate time series analysis
· Sentiment analysis in Python (Twitter sentiment analysis)
· Text analysis
· Rolling Mean For Detecting Temporal Variation
· Simple Exponential Smoothing (SES)
· Holt extended simple exponential smoothing
· Holt Winters
· Auto Regression Model (AR): Consider Previous Time Steps
· Implement a Basic ARIMA Model
· Automated ARIMA & Account for Seasonality (SARIMA)
· Practical Exercise
Lecture 59-60 Principal Component Analysis (PCA)
Live Lecture
· Primer
· Measurement
· Assumptions
· Applied PCA work flow
· Analysis of performance
· Dimensionality reduction with (PCA)
· Practical Exercise
Case Studies
Live
· Case Study -1 Creating Application- oriented Analyses Using Tax Data
· Preparing for the analysis of top incomes
· Importing and exploring the world's top incomes dataset
· Analyzing and visualizing the top income data of the India
· Furthering the analysis of the top income groups of the India
· Reporting with Jinja2
· Case Study -2 Driving Visual Analyses with Automobile Data
· Preparing to analyze automobile fuel efficiencies
· Exploring and describing fuel efficiency data with Python
· Analyzing automobile fuel efficiency over time with Python
· Investigating the makes and models of automobiles with Python
· Case Study -3 Working with Social Graphs
· Preparing to work with social networks in Python
· Importing networks
· Exploring subgraphs within a heroic network
· Finding strong ties
· Finding key players
· Exploring characteristics of entire networks
· Clustering and community detection in social networks
· Visualizing graphs
· Case Study -4 Recommending Movies at Scale
· Modeling preference expressions
· Understanding the data
· Ingesting the movie review data
· Finding the highest-scoring movies
· Improving the movie-rating system
· Measuring the distance between users in the preference space
· Computing the correlation between users
· Finding the best critic for a user
· Predicting movie ratings for users
· Collaboratively filtering item by item
· Building a nonnegative matrix factorization model
· Loading the entire dataset into the memory
· Dumping the SVD-based model to the disk
· Training the SVD-based model
· Case Study -5 Har vesting and Geo locating Twitter Data
· Creating a Twitter application
· Understanding the Twitter API v1.1
· Determining your Twitter followers and friends
· Pulling Twitter user profiles
· Making requests without running afoul of Twitter's rate limits
· Storing JSON data to the disk
· Setting up MongoDB for storing the Twitter data
· Storing user profiles in MongoDB using PyMongo
· Exploring the geographic information available in profiles
· Plotting geospatial data in Python
· Case Study -6 Optimizing Numerical Code with NumPy and Scipy
· Understanding the optimization process
· Identifying common performance bottlenecks in code
· Reading through the code
· Profiling Python code with the Unix time function
· Profiling Python code using built-in Python functions
· Profiling Python code using IPython's %timeit function
· Profiling Python code using line_profiler
· Plucking the low-hanging (optimization) fruit
· Testing the performance benefits of NumPy
· Rewriting simple functions with NumPy
· Optimizing the innermost loop with NumPy